
Custom Knowledge Retrieval Pipeline 
with LLMs for Question Answering Tasks

Motivation

Marco Wang | ShaoBo Zhang

We both wanted to experiment with Large Language Models (LLMs) and their capabilities to 
interact with our own custom datasets. Some ideas we had were to create a virtual 
representation of ourselves using a LLM-based conversation agent, or to create a LLM-
augmented knowledge base for our private notes and documents. While retrieval-augmented 
LLM are not new, there are very few existing implementations that are practical for our uses 
cases and are cost-effective. On a practical note, retrieval-augmented LLMs allow LLMs to 
generate responses based on custom domain-specific data without the need to perform 
parameter finetuning, which can often be expensive. This is particularly beneficial for cases 
where the data is private or is updated frequently. Overall, through this project we hope to 
learn more about the knowledge retrieval using LLMs, in-context question answering and 
prompt engineering.

Vector Database

Architecture

A core part of our pipeline is the vector database (vectorDB), which we will introduce here 
briefly. In short, A vectorDB is a type of databse that specializes in handling embeddings. 
Embeddings, in the context of language models, are mathematical representations of text 
where words or phrases with similar meanings are mapped to similar positions in a high-
dimensional space. VectorDB are simply databases provide optimized storage and querying 
capabilities for embeddings. There are many use cases of vectorDBs such as semantic search 
and long term memory for conversation agents. In our case, we use it for knowledge retrieval. 

Our pipeline consists fo three main components, a vectorDB, a LLM and the client interface. 
For the vectorDB, we use chromaDB, which is an open source vectorDB. The database is 
hosted on a serverless container using modal. For the embedding model, we are using 
instructor-xl, which is an instruction fine tuned embedding model based on a GTR model. The 
embedding model is also hosted on modal alongside the database. For the LLM, we use a 
proxy-based API of OpenAI's ChatGPT 3.5 turbo model. This API essentially allows us to use 
chatGPT for free with a daily rate limit. The rate limit is similar to using chatGPT directly 
through the browser, which is more than enough for our use case.



For ingestion, we first use document loaders from langchain to turn files stored on disk into 



text. The text are then split into chunks of 1000-4000 characters (depending on the specific 
use case) with 200 characters of overlap. These chunks of text are then fed into the 
embedding model to generate embeddings. The embeddings are then stored in the vectorDB.



For querying,we first pass the query to the LLM to generate a more concise structured query 
that is more suitable for the vectorDB. The structured query is then passed to the embedding 
model to generate an embedding of the query. The embedding is then passed to the 
vectorDB to retrieve the top k most relevant documents. Our pipeline will also generate k-
random examples from the training data to be used as few-shot examples. The documents 
are then combined with the few-shot examples and original query to form a large prompt. 
This prompt is then passed into the LLM for the final time to generate the final response.



Our data flow and pipeline architecture are illustrated in the diagrams below.

Dataflow



Pipeline Architecture

QASPER



QASPER Cont.

Evaluation

We use the QASPER dataset to evaluate the performance of our pipeline. QASPER is a dataset 
of 5,49 question over 1585 natural language processing (NLP) papers. Each question is 
written by an NLP practitioner who only reads the abstract and title of the paper. The 
questions are then answered by a separate set of NLP practitioners who have read the entire 
paper. The dataset consists of 4 types of answers: yes/no, extractive, abstractive, and 
unanswerable. This is illustrated in the table below. For more details about the dataset, check 
out the original paper.

For evaluation, we run three different versions of our pipeline over the test set of the QASPER 
dataset. The test set contains around 1500 questions over around 400 different papers. We 
chose the smaller-sized test set, as opposed to the training set since due to limitations in the 
rate limit of the API. We use the evaluation script provided by the original paper to evaluate 
our results. The three versions of our pipeline are:



LLM + 6 few-shot examples 

LLM + 6 documents from vectorDB 

LLM + 6 documents from vectorDB + 6 few-shot examples



We also attempted an experiment with an LLM without few-shot in context learning, however, 
that result was extremely poor and is not included here. We chose 6 documents and 6 few-
shot examples as it gave us the best results out of the different combinations we tried, while 
keeping the context size within the 4000 token limit of chatGPT. For ingestion, we split the 
papers into chunks of 1000 characters with 200 characters of overlap. The evidence that is 
usually needed to answer the questions in the QASPER dataset are relatively short and do no 
require long chunks of continuous text. So, we picked a relative smaller chunk size. This also 
allowed us to reference more documents during the query phase, and increasing the 
probability of choosing the right document in order to answer the question. Our results is 
shown in the table below. Pipeline 1 is labeled as chatGPT. Pipeline 2 is labeled as our pipeline 
w/ zero-shot. Pipeline 3 is labeled as our pipeline w/ few-shot.

Results from our experiments compared to results from other papers.



Results

Limitations

Based on the F1 similarity test reported by different papers and the test scripts we have ran 
on our pipeline and chatGPT, we have created the table below. The LED-base score is 
provided in the QASPER paper, while the VisConde score is provided in the VidConde paper. 
The SOTA score we are using in the table is the score of the CoLT5 model, which is currently 
the highest on the leaderboard as of June 1st 2023. Then we have ChatGPT's score with few 
shot examples, and the score of our pipeline with and without few shot examples as inputed 
prompt.



As we can see our pipeline out performs the VisConde model by just a little and have 
significant improvement against both the ChatGPT and LED-base score. Moreover, it is 
relatively close to the SOTA model, which is finetuned and trained with a lot of computation 
resources. Therefore, we are quite satisfied with our result.



Looking closer into each category, we can see that our pipeline performs similarly to the 
VidConde model at extracting information, which is both a little bit short of human testers. We 
can see that abstraction tasks are in general really hard for every model and our pipeline is 
still quite far from the human abstraction score. We also note that our pipeline underperforms 
in answering yes/no questions compared to both humans and the VisConde model, which 
means it is not nearly as good at understanding the material context as the other two. Lastly, 
we see that our pipeline performs significantly better than every other model at answering 
unanswerable questions, which means it hallucinates a lot less than those models. This is 
extremely important as a big part of the goal of our project is to make the LLM hallucinate as 
little as possible.



All in all, we are satisfied with the result our pipeline has achieved and we hope to better 
improve the abstractive ability of our pipeline down the line for further development. Another 
note we'd like to make here is that our pipeline with out few shots prompting performs 
significantly worse because it does not answer the question in the correct format. For 
example, it would answer a yes/no question like "yes, because ...", while the result should only 
have yes or no for better F1 similarity score. Therefore, adding the few shot example when 
prompting significantly improved the performance of our pipeline.

Although we have achieved a decent performance, the project still has some limitations. 
Firstly, it cannot accommodate text inputs that exceed the context window size, which 
restricts the complexity and depth of the data we can process. Secondly, the system 
struggles to answer abstractive questions that necessitate reasoning with extensive context, 
limiting its problem-solving capability in certain scenarios. We can see that this is a common 
trend among every model and even is the worst category humans are performing in. 
Additionally, the employed similarity search method is imperfect and could overlook 
important context or provide irrelevant documents, impacting the accuracy and relevance of 
responses. Finally, we are using ChatGPT instead of our proprietary Large Language Model 
(LLM), which might limit our customization ability and overall control over the system. 
Specifically, we do not possess the ability to finetune the model unless we switch to an open 
source model and run it on our own server after fine tuning.



Next Steps

Sources

To build on our current project, we aim to run our own Large Language Model (LLM) on our 
own server to solve the rate limit and privacy issue we have right now using api calls. 
Moreover, we would like to use this pipeline in production with the project ideas we've 
mentioned in the motivation section, which would allow us to identify potential issues when 
this pipeline is deployed in different problem spaces. We would also like to tune our 
parameters such as the chunk sizes when processing the knowledge base to optimize for our 
performace (specifically the abstraction field). Lastly, we'd also like to use the 'chain of 
thoughts' method in prompting by integrating generated explanations from the examples 
used in our few-shot learning approach into the database. According to our research, this 
method has been proven effective in many papers when trying to improve the performance of 
a LLM.

�� langchain https://python.langchain.com/en/latest/index.htm�
�� A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers 

https://arxiv.org/abs/2105.0301�
�� Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks https://arxiv.org/

abs/2005.1140�
�� CoLT5: Faster Long-Range Transformers with Conditional Computation https://arxiv.org/

pdf/2303.09752.pd�
�� ChatGPT API FREE Reverse Proxy https://github.com/PawanOsman/ChatGP�
�� Chroma - the open-source embedding database https://github.com/chroma-core/chrom�
�� Modal: End-to-end cloud compute https://modal.com�
�� instructor-xl https://huggingface.co/hkunlp/instructor-xl

Example Outputs
As a demo, we embedded around 10 papers related to the GLIDE paper and diffusion models. 
Here are some example outputs from our pipeline.



Question: What are the components of the u-net architecture used in diffusion models?

Answer: One component used in a U-Net architecture for diffusion models is self-attention 
layers, which have become important in recent literature. Another component is residual 
connections. The U-Net incorporates downsampling and upsampling to operate on larger 
spatial scales for increased computational efficiency, and features long-range skip-
connections. The network is grouped into sequences of six layers, with most sequences 
separated by downsampling or upsampling.



https://python.langchain.com/en/latest/index.html
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/pdf/2303.09752.pdf
https://arxiv.org/pdf/2303.09752.pdf
https://github.com/PawanOsman/ChatGPT
https://github.com/chroma-core/chroma
https://modal.com/
https://huggingface.co/hkunlp/instructor-xl


Question: Why is classifier free guidance better than classifier-guided diffusion for the GLIDE 
model?

Answer: Classifer-free guidance is better than classifier-guided diffusion for the GLIDE model 
because it simplifies the model training pipeline and does not require training a separate 
classifier, which can reduce the need for noisy data. Additionally, classifer-free guidance 
allows a single model to leverage its own knowledge during guidance, which can improve 
sample quality. Finally, classifer-free guidance can avoid issues related to decreased diversity 
that can arise from using classifier-guided diffusion.



Question: What is adaptive group normalization?

Answer: Adaptive Group Normalization (AdaGN) is a layer used in deep learning architectures 
that incorporates the timestep and class embedding into each residual block after a group 
normalization operation, similar to adaptive instance normalization and FiLM. It is used to 
condition diffusion models on class labels and has been found to improve sample quality.



Question: What are the core results from the paper (2112.10741)?

Answer: The core results from the paper "GLIDE: Towards Photorealistic Image Generation 
and Editing with Text-Guided Diffusion Models" include the exploration of text-conditional 
image synthesis using diffusion models and two different guidance strategies (CLIP guidance 
and classifier-free guidance), the demonstration of fine-tuning the model to perform image 
inpainting and text-driven image editing, and the comparison of their model's performance 
with other state-of-the-art text-conditional image generation models, showing superior 
results in terms of photorealism and caption similarity. Additionally, the paper addresses 
safety considerations and proposes filtering training images to reduce potential harm in 
disinformation or biased images.


